BS2 Mouse

It is no secret that our PAK-VI lets you connect a PS/2 keyboard to a Basic Stamp. The
example code you can find in our document library uses the PAK-VI to generate Morse
code using a standard keyboard. I've seen other people use the PAK-VI and a wireless
keyboard to command a robot. I've also heard of people interfacing "keyboard wedge"
scanners using the PAK-VI.

When I first designed the PAK-VI, I tested using the chip with a PS/2 mouse. It worked,
but I didn't really develop the idea and although the literature says it can be done, I've
never really provided an example. Well, this month marks the end of that! I'm going to
show you how to interface a mouse to a BS2 or any micro using the PAK-VI.

Why would you want a mouse on a Basic Stamp? A track pad or a track ball can allow you
adjust analog values in a very intuitive way. In addition, you can gut a mouse and get a
very nice X/Y position system. I've always thought this would be a cheap way to "close
the loop" on a homemade CNC mill, for example. With some mechanical linkage, you could
even use a mouse to track the movement of a robot.

Inside the Mouse

The normal PS/2 mouse sends three byte packets. This is unlike the keyboard which
sends scan codes. When you reset the mouse, it sets its output of f. If you want to listen
to the mouse, you have to enable it. Since none of this relates to ASCII characters,
you'll want to set the PAK-VTI to raw mode before you do anything.

The mouse has two modes you can set. Stream mode just spits position packets out as the
mouse moves. The PC uses this mode, but for the Stamp it isn't very handy. Luckily, the
mouse also supports a remote mode. In this mode, the mouse accumulates position
information. When you ask for the information, the mouse sends a three byte packet and
resets the position information. That way you don't have to constantly monitor the mouse
for input. However, the mouse can only track differences of +/- 255 counts, so you have
to read the mouse often enough to prevent overflow (there is an error indicator if you
wait too long).

The first byte of each packet contains several status bits, defined in my program like
this:

yover var pl.bit7 ' y overflow
xover var plbité ' x overflow

ysign var pl.bit5 ' y sign

xsign var pl.bit4 ' x sign
midbtn var pl.bit2 * button flags
rightbtn var pl.bitl

leftbtn var p1.bit0

As you might expect, the xover and yover variables tell you if you've had an overflow. The
flags that end with b7nindicate when a particular button is pressed.

The xsignand ysign flags are 1 when the corresponding value is negative (meaning the
mouse direction is "backwards" from the positive direction. However, when a quantity is
negative, the mouse sends the data (the 2nd byte is the x data and the 3rd byte is the y
data) in 2's compliment format. So you either have to sign extend the data or convert it
to a magnitude before you use it. My code converts it to a magnitude.

The connections required are Stamp pin 15 to the PAK's output, pin 14 to the PAK's input,
and pin 13 to Enable?2.

Testing

I hooked an Alps Glidepoint trackpad to a PAK-VI and ran the program below. Here's the
screen shot:

/ Debug Terminal #1
Com Port: Baud Rate: Farity:
[coms B} Josoo Bl fHore B
[ata Biks: Flaws Contral: @ 7% [DIR [RTS
[z fof [¢mx opsr ecrs

=

124 37
Left button dowmn

Eapture...l Macms...l Hesumel [Elear | Cloze |

The program shows the accumulated X and Y positions, plus the button status. As you
read through the program here are a few fast facts to keep in mind:

1 Sending $02 to the PAK-VI puts it in raw mode

1 Sending $0B to the PAK-VI causes it to send the next byte directly to the mouse
1 $FO0 sets remote mode

1 $EB requests a motion packet

1 $FA indicates a successful reply from the mouse

1 The expression ((xreg-1)"$FF) computes the magnitude of a negative number in xreg

Other commands that I did not use include:

1 OxF3 - Set the sample rate. The mouse responds with "acknowledge" (OxFA) then
reads one more byte. After receiving the sample rate, the mouse responds with
OxFA and resets the movement counters. Valid sample rates are 10, 20, 40, 60, 80,
100, and 200 samples/sec.

1 OxF2 - Get device ID. The mouse responds with "acknowledge" (OxFA) followed by
O for a standard PS/2 mouse. The mouse also resets its movement counters.

1 OXES8 - Set resolution. The mouse sends back an OxFA and then waits for another
byte. A O byte sets 1 count/mm, a 1 sets 2 counts/mm, and 2 sets 4 counts/mm, and
3 sets 8 counts/mm.

The Program

'{$SSTAMP BS2}
' Mouse code for BS2 and PAK-VI

pakout con 15
pakin con 14
baud con 84
fpin con 13

keyin var byte

' This assumes a 3 byte packet
Some mice can do 4 byte packets
(mainly those with wheels) but
you have to turn on that mode
pl var byte ' mouse status

xreg var byte raw x motion

xmov var word x accumulator
yreg var byte raw y motion

ymov var word y accumulator

' flags in pl
yover var pl.bit7 'y overflow

xover var pl.bité6 x overflow

ysign var pl.bith 'y sign
xsign var pl.bit4 ' x sign
midbtn var pl.bit2 ' button flags

rightbtn var pl.bitl
leftbtn var pl.bitO

high fpin
' Reset PAK and wait for device reset

serout pakout,baud, [$FF]

pause 500

xmov=0

ymov=0

' Enter raw mode

serout pakout,baud, [2]

' Set remote mode

serout pakout,baud, [$0B, SFO]

serin pakin\fpin,baud, [keyin]

' should get SFA

if keyin=$FA then top

Debug "Didn't get S$FA from remote mode set",cr

top:

' read movement packet

serout pakout,baud, [$0B, SEB]

serin pakin\fpin,baud, [keyin,pl,xreqg, yreqg]
if keyin=$FA then parse

debug "Didn't get S$FA on mouse poll",cr
goto top

parse:

if yover or xover then overflow
if xsign=0 then xplus

' convert negative number
xmov = xmov — ((xreg-1)"SFF)
goto doy

xplus:

XMOV=XmMov+xreg

doy:

if ysign=0 then yplus

' convert negative number

ymov=ymov— ((yreg-1)"S$FF)
goto ydone

yplus:

ymov=ymov+yreg

ydone:

Display results
debug cls, sdec xmov, " ", sdec ymov ,cCr
if leftbtn=0 then checkmid
Debug "Left button down",cr
checkmid:
if midbtn=0 then checkr
Debug "Mid button down",cr
checkr:
if rightbtn=0 then top
Debug "Right button down",cr
goto top

overflow:
Debug "Overflow occured",cr
goto top

