

SeaBass
User’s Manual

© 2004 by AWC

AWC
1279 FM 518 #2

Kemah, TX 77565
(281) 334-4341

http://www.al-williams.com/awce.htm
V1.0 15 July 2004

Table of Contents
Overview – What is SeaBass? .. 1
If You Need Help ... 1
What Else You'll Need ... 1
Features.. 2
Differences from Basic ... 2
Controlling the Build Process ... 3
Command Line Options.. 4
Keyword Reference .. 5

@ ... 5

@@.. 5

‘ (Apostrophe) .. 6

` (Back Quote).. 6

#Link.. 6

Array.. 7

Cinclude ... 7

Const .. 7

DefType ... 7

Dim .. 7

Do/Loop... 8

End... 9

For/Next ... 9

Function ... 10

Goto ... 11

If/Then/Else/End if ... 11

Include ... 12

Let.. 13

Rem.. 13

Return .. 13

Sub... 13

Operator Reference... 14
APP-II Specifics... 15
APP-IV Specifics ... 15
Example ... 17
Installing a C Compiler... 19
Notes.. 20
Notes.. 22
License... 23

1

Overview – What is SeaBass?
SeaBass is a unique compiler for a Basic-like language that uses
standard C as an output language. That means that SeaBass allows
you to write easy-to-understand Basic programs for any
microcontroller that supports a C compiler!

In addition to the simplicity of Basic, SeaBass offers you full
access to the power of C. You can mix C code with your programs
as well as add in existing or new C libraries. If your C compiler
supports embedded assembly code, you can even put assembly
language code into your SeaBass program!

Because SeaBass integrates seamlessly with C, it is a perfect
intermediate step between Basic and C programming.

If You Need Help
If you require assistance, please feel free to contact us. The best
way to get support is via e-mail (stamp@al-williams.com).
However, you may also call between 9AM - 4PM Central Time at
(281) 334-4341. You can also fax to (314) 596-9925. Be sure to
check out our Web page for updates at www.al-
williams.com/awce.

What Else You'll Need
In addition to SeaBass, you must have a C compiler for the
platform you wish to target. Most of the examples in this manual
assume you are using the AWC APP-IV Atmel ATMega
development board and the associated GNU C compiler. However,
many compilers will process the code produced by SeaBass, so
you may use it with GNU C on nearly any platform (including
Linux or Windows) and other compilers such as SDCC, IAR, and
others. The example directory has files required for using SeaBass
with SDCC and the APP-II Microchip PIC development board.

2

Of course, you also need a hardware target and a means of
programming the processor. This manual assumes you are using
the APP-II or APP-IV for these functions.

Features
SeaBass includes all the features you’d expect of a modern Basic
language including typed variables, looping constructs, and block
structured control statements.

Although you don’t need a detailed knowledge of C to use
SeaBass, the language does use some C language constructs to
improve efficiency and maintain compatibility with C code.

Differences from Basic
There are a few differences between SeaBass and traditional Basic
that you should be aware of:

• All variables must be declared with Dim or Array
Example: Dim x as int

• Comments at the end of a line start with ` (a back quote)
instead of an ordinary quote
Example: x=f() ` Set x to the current value

• Arrays use square brackets ([]) for indices:
Example: sample[i]=getValue()

• Identifier names for variables, functions, and subroutines
are case sensitive
Example: X=x+10 ` two different variables

• Calling a subroutine or a function with no arguments still
requires empty parenthesis
Example: x=f()

• Functions return a value via the RETURN statement
Example: RETURN 10

3

• You must avoid using words reserved by your C compiler
as identifiers even if they are legal Basic identifiers
Example: break=10 ` break is reserved by C compiler!

• Parameters are passed to functions and subroutines by
value, not by reference (that is, functions and subroutines
receive copies of their arguments by default)

• There is no GOSUB statement (SeaBass uses named
functions with formal parameters)

• SeaBass does not support Basic string handling (although
you can use C-language strings with no problem)

• SeaBass uses C-language operators, most of which are the
same as their Basic equivalents; a few are different (for
example Basic’s MOD operator is % in SeaBass)

There is one exception to the last rule. Although C uses == and !=
as operators, SeaBas recognizes = and <> for these operations just
as Basic does.

Controlling the Build Process
SeaBass’ major function is to generate C source code that
corresponds to your program. However, SeaBass can also launch a
script that will complete the build process by invoking the C
compiler and other tools necessary to generate an output object
file.

By default, SeaBass tries to execute a program called ccompile.bat
to complete the build process. It sends the base name of your
program as the first argument, and any “linked files” (see #LINK
in the keyword reference) as additional arguments.

What this file does is entirely up to you. For the APP-IV, for
example, the file looks like this:

4

@echo off
set TARGET=%1
set EXTRA=%2 %3 %4 %5 %6 %7 %8 %9
make program

Of course, there is a makefile included which is used to perform
the build process and start the programming software.

Command Line Options
If you start SeaBass with no command line arguments, a dialog
will appear that allows you to select an input file, a build script,
and set several options. You can leave this window open and
simply press the Compile button when you wish to rebuild your
program.

However, if you prefer, you can name the source file on the
command line. This prevents the user interface from appearing. In
this case, you can specify several options on the command line to
control the build process:

• -c: Compile only; do not attempt to launch a build script

• -b script: Specify a build script to use instead of
ccompile.bat

• -l: Prevent generation of #line directives; normally SeaBass
includes these to allow the C compiler to generate more
meaningful error messages

If you do not supply command line arguments, you’ll see a dialog
similar to the following:

5

This dialog lets you set all the parameters required to operate
SeaBass. You may leave the “Optional Script” box empty if you do
not require a customized build script (that is, this box corresponds
to the –b option).

The dialog does provide one additional option: “Convert \ to /”
which causes SeaBass to convert slashes in the file names before
calling the build script. This is useful when using the GNU C
compiler and other Linux-style tools.

Keyword Reference
Note that keywords are not case sensitive, although variable,
function, and subroutine names are case sensitive.

@
The @ keyword passes the remainder of the line directly to the C
source code output. This is an easy way to include C code in your
SeaBass source.

@#include <io.h>
@x++;

@@
The @@ keyword causes subsequent lines from your SeaBass
program to appear in the C language output. This copying
continues until another @@ line appears. This is handy for
including large amounts of C code into your SeaBass program.

@@

6

/* This is a piece of code copied from
somewhere else */
int dblit(int n)
{
 return n*2;
}
@@

‘ (Apostrophe)
The apostrophe or single quote is used at the start of a line to mark
a comment (just like Rem). Note, however, that if the line has
anything other than a comment on it, you must use the backquote
(`) to mark the comment. It is acceptable to use the backquote in all
cases.

' A comment that is OK
x=10 ' A bad comment (needs back quote)

` (Back Quote)
The back quote causes everything after it on the line to become a
comment. You can use this anywhere on a line.

` A single line comment
x=10 `Set X to 10

#Link
The #Link keyword causes the compiler to send the named file
(which must be in quotes) to the compile script. This is a handy
way to add C or object files to your build process.

#Link "mylib.c"
#Link "yourlib.o"

7

Array
The Array keyword defines a single array with an optional type. If
you don’t specify a type, SeaBass assumes int. Note that SeaBass
uses square brackets to denote array subscripts, which always start
at 0. The size provided in the Array statement defines the length
of the array, so a 10 element array has elements 0 to 9.

Array samples[20] ` int samples[0] to samples[19]

Array cs[10] as char ` cs[0] to cs[9]

Cinclude
You can use Cinclude to include a C-language header file. It is
essentially the same as writing “@#include”.

Cinclude "io.h"

Const
The Const keyword allows you to define constants in your source
code.

Const limit=10

DefType
Variables have types in SeaBass. Each type must be a single word
that corresponds to a C language type (for example, int or char).
However, using DefType you can define more complex types and
use a name of your choosing. For example, you might want to
define an unsigned type uint that is equivalent to unsigned int.

DefType uint unsigned int
DefType pint int *

Dim
The Dim keyword allows you to define variables and assign their
types. Unlike standard Basic, this step is required since memory is
a scare resource on most microcontroller targets where you will

8

use SeaBass. The type names must be a single word that the C
compiler will recognize (you can use DefType to define custom
types that are more complex). The actual types available will
depend on your C compiler, but typical values are: char, int, and
float. If you omit the type name, SeaBass assumes the variable is
an int. All Dim statements must appear outside of a Function or
Sub or at the beginning of a Function or Sub.

Dim I ` Assumed int
Dim x as int
Dim a as char, y as float

Do/Loop
SeaBas allows four types of controlled do loops. The first type
always executes at least once and continues until the expression
provided to the Loop keyword is nonzero:

Do
 x=x+1
Loop While x<>10
You can also loop until the expression is zero:

Do
 x=x+1
Loop Until x=10

It is also possible to do the test first in both cases:

Do While x<>10
 x=x-1
Loop

Do Until x=10
 x=x-1
Loop

9

End
The End statement can be used to end a subroutine or function by
adding the SUB or FUNCTION keyword, as appropriate. You
also end an If statement with End If.

When used by itself, End causes the processor to loop endlessly,
effectively stopping your program.

Sub Demo(n as int)
If n=0 then
 n=1
End If
F(n)
End Sub

For/Next
The For loop allows you to execute code some number of times.
There are two forms:

For I= 1 to 10
 F(I)
Next I
In this format, I assumes values of 1 to 10, with an increment of 1
(that is, the sequence is 1, 2, 3, 4… 10).

You can supply an optional Step:

For I = 1 to 10 Step 2
 F(I)
Next I
Now the sequence is 1, 3, 5, 7, 9.

It is permissible to make the loop go backwards with or without a
Step clause. For example:

For I= 10 to 1
 F(I)

10

Next I
SeaBass will correctly set the default step value to -1 in this case.

Function
The Function keyword allows you to define a subroutine that
returns a value via the Return keyword.

Function dblit(n as int) as int
 Return n*2
End Function
. . .
x=dblit(20) ` x=40

Note that if the function doesn’t take arguments, it still requires
parenthesis both when defining it and when using it:

Function quibble() as int
 Return 100
End Function
. . .
x=quibble()

In addition, SeaBass programs start executing by running a
function called main. Remember, SeaBass is case sensitive, so
Main or MAIN won’t work – it has to be main:

Function main() as int
. . .
End Function

Some C compilers will complain that main needs arguments, and
you can supply them if the compiler is strict about it. For most
embedded systems, it doesn’t matter since these arguments pass
information about a nonexistent command line.

11

Goto
Use Goto to jump to a named label in your program. Labels are
simply an identifier ending with a colon. The underlying C
compiler will place restrictions on where you can jump (for
example, you can’t jump from one Sub or Function to another.

toploop:
 x=x+1
 If x>0 Then
 y=y+1
 Goto toploop
 End If

Note that you can often use a Do loop or other SeaBass feature to
avoid using Goto.

If/Then/Else/End if
There are two forms of the If statement. The first form jumps to a
label if the indicated condition is non zero (see Goto for more on
labels):

If x=0 Then Xwaszero
. . .
Xwaszero:
 Y=Y+1

The second form allows you to execute multiple lines of code
based on the condition:

If x=0 Then
 Y=Y+1
 Z=Z-1
End If

12

You can also use an Else keyword with this form to execute
statements if the condition is zero (that is, not true):

If x=0 Then
 Y=Y+1
 Z=Z-1
Else
 Y=Y-1
 Z=Z+1
End If

Include
The Include keyword allows you to bring another SeaBass file into
your compilation. This is like copying the named file into your
main file. For example, suppose your main file has the following:

X=1
Include “test.bas”
Z=3
And further assume that test.bas contains just one line:

Y=2
The final output would be just as if you had written:

X=1
Y=2
Z=3

Of course, you can include a file that includes another file, and so
on (up to some practical limit set by your computer’s memory).

13

Let
The Let keyword is an optional way to introduce an assignment
expression. For example, these two lines are equivalent:

Let X=0
X=0

Rem
The Rem keyword starts a remark. The entire line is then a remark.
If you want to remark just part of a line use ` (backquote). The
Rem keyword is equivalent to the apostrophe (').

Return
See the Function keyword for a description of Return. You can
also use Return with no expression to end a Sub early.

Sub
The Sub keyword allows you to define a subroutine, which is
similar to a Function but it does not return a value.

Sub BumpX(v as int)
 X=X+v
End Sub

14

Operator Reference
The exact operators supported by SeaBass actually depend on the
underlying C compiler. However, here is a list of common
operators:

Operator Description Sample
- Negate -x
~ Bitwise Inversion ~x
+ Add x+y
- Subtract x-y
* Multiply x*y
/ Divide x/y
% Remainder From Integer

Division
x%y

>> Shift Right x>>y
<< Shift Left x<<y
< Less Than x<y
> Greater Than x>y
<= Less Than Equal To x<=y
>= Greater Than Equal To x>=y
== Equal x==y
!= Not Equal x!=y
& Bitwise And x&y
| Bitwise Or x|y
^ Bitwise Exclusive Or x^y
&& Logical And x&&y
|| Logical Or x||y
! Logical Not !x

Note that in “logical” contexts (that is, the predicates of If
statements or loops) SeaBass automatically converts = to == and
<> to != so that you can continue to use Basic-like syntax for these
operators.

Comparison operators like < or > return 0 for false or 1 for true.
Bitwise operators operate on all the bits in their arguments (so 6 &
5 => 4). Logical operators treat any non-zero argument as a 1 and
return a 0 or a 1 (so 6 && 5 => 1).

15

However, SeaBass does not perform this substitution in assignment
contexts. If you wish to use “equal” or “not equal” in an
assignment, you should use the C-language format.

APP-II Specifics
To use SeaBass with the APP-II, you must first install the SDCC
compiler and tools (included on the CDROM). Once you have
these installed, you’ll need to copy several files from the pic
example directory. One of these files, ccompile.bat, will require
modification to fit your system’s path.

Once you’ve modified these files, you can run Seabass in the usual
way to generate a hex file. You download the hex file using any of
the methods supported by the APP-II.

Note that the while SeaBass has specific support for the APP-II,
you should be able to use SeaBass with any of the SDCC-
supported processors including the PIC16F family or 8051-type
processors. Naturally, you must have a way to program the device
you want to use from a standard hex file.

APP-IV Specifics
To use SeaBass with the APP-IV, you must first install the Gnu C
compiler and tools (included on the CDROM). Once you have
these installed, you’ll need to copy two files from the avr example
subdirectory: ccompile.bat is the compiler script for the compiler
and makefile is a prototype make file for your projects.

You should edit both of these files and adjust paths or customize
options that you want to change. For example, the makefile allows
you to change the COM port you use, or the programming method
(for example, you can use uisp or AvrDude). Once you change
these files, you should not need to change them again. You can
place ccompile.bat in a directory on your path, and simply copy the
makefile to each directory you use. This will allow you to make
further customizations, if necessary, to the makefile on a per
project basis.

16

Once you have these files installed, you can compile your project
by simply issuing the SeaBass command with arguments or by
using the Windows dialog. SeaBass will automatically configure
your makefile for your specific project and even launch the APP-
IV programming software of your choice.

There are several .bh (SeaBass header) files that are useful with the
APP-IV. The avrstdio.bh file, for example, provides routines for
interfacing with the APP-IV serial port:

• uart_ready – Returns true if data is available from the
UART

• uart_putchar – Writes a character to the serial port

• uart_getchar – Gets a character from the serial port

• uart_init – Set up the UART to the desired baud rate (64 is
9600 baud, see the file for constants for each baud rate)

In addition, the file enables you to use the C standard I/O
functions such as printf and scanf, if you want to use them.

The avrio.bh file is just a wrapper around the APP-IV’s I/O
functions and provides easy-to-use I/O statements like INPUT,
OUTPUT, HIGH, LOW, TOGGLE, etc. Keep in mind that you
may use any of the APP-IV’s C libraries, or any of the other
libraries accessible to the C compiler from SeaBass. The example
at the end of this manual shows a program that links in the C
app4delay library and uses it directly.

Note that while SeaBass directly supports the APP-IV, you may
use it with any target supported by GCC assuming you have a way
to program the device.

17

Example
This program sends Morse code using an LED on port B, pin 0 of
an APP-IV chip. It uses the SeaBass avrio.bh header to define I/O
operations, and the APP-IV’s C-language app4delay library to
define time delay operations.

` Example SeaBass Program
` Sends a little Morse code on
` an LED on Port B pin 0

include "avrio.bh" ` get I/O routines
cinclude "app4delay.h" ` get delay from
#link "app4delay.c" ` C code

` Define a string type
deftype string char *

` Speed of a dot in milliseconds
Const speed=200

` play a dot
sub dot()
 HIGH(B,0) ` LED on
 delay_ms(speed)
 LOW(B,0) ` LED off
 delay_ms(speed)
end sub

` play a dash
sub dash()
 HIGH(B,0)
 delay_ms(speed*3)
 LOW(B,0)
 delay_ms(speed)
end sub

18

` pause between characters
sub space()
 delay_ms(speed*3)
end sub

` Main program
function main() as int
 dim text as string
 dim i

 text="-.-. --.-" ` message to send

` Set LED to output
 OUTPUT(B,0)

` Main code
top:
 for i=0 to strlen(text)-1 ` walk through
text
` do the right thing
 if text[i]='.' then
 dot()
 end if
 if text[i]='-' then
 dash()
 end if
 if text[i]=' ' then
 space()
 end if
 next
 delay_ms(10000) ` wait 10 seconds
 goto top ` and do it again
end function

19

Installing a C Compiler
The SeaBass CDROM contains two open source compiler
distributions. The WinAVR distribution is a GNU C compiler for
the AVR-family processors and supports the APP-IV board or
nearly any Atmel AVR/ATmega processor. You can download the
latest version of WinAVR from http://winavr.sourceforge.net.

The SDCC compiler supports the PIC and 8051/8052 processors
(including our APP-II board). You can download the latest version
of SDCC at http://sdcc.sourceforge.net.

Nearly any C compiler will work with SeaBass. To use a different
C compiler, you’ll need to create your own CCOMPILE.BAT to
control the build process. Note that you can also ask SeaBass to
compile only (using the –c option or the check box on the
Windows dialog) and then manually compile the resulting C file.

20

SeaBass Keywords
@ C Pass through

@@ Multiline C pass through

‘ Comment at start of line

` Comment at end or start of line

#Link Add file to compile

Array Define an array

Cinclude Include C file

Const Define constant

DefType Define type

Dim Declare variable

Do/Loop Execute code repeatedly

End Stop program or end subroutine/function

For/Next Execute code repeatedly

Function Define a function

Goto Goto a label

If/Then/Else Conditionally execute code

Include Include a SeaBass file

Let Optional assignment keyword

Rem Remark

Return End a function or subroutine

Sub Define a subroutine

21

Notes

22

Notes

23

Notes

24

License
This is a legal agreement between the end user ("You") and Al Williams Consulting., its affiliates and subsidiaries (collectively "AWC"). This
Agreement is part of a package (the "Package") that also includes, as applicable, executable files that you may download, a disc, or a CD-ROM
(collectively referred to herein as the "Software") and certain written materials (the "Documentation"). Any patch, update, upgrade, modification
or other enhancement provided by AWC with respect to the Software or the Documentation shall be included within the meanings of those terms,
for the purposes of this Agreement, except to the extent expressly provided below.

BY DOWNLOADING OR INSTALLING THE SOFTWARE, YOU ACKNOWLEDGE THAT YOU HAVE READ ALL OF THE TERMS
AND CONDITIONS OF THIS AGREEMENT, UNDERSTAND THEM, AND AGREE TO BE BOUND BY THEM. YOU UNDERSTAND
THAT, IF YOU PURCHASED THE PACKAGE FROM AN AUTHORIZED RESELLER OF AWC, THAT RESELLER IS NOT AWC'S
AGENT AND IS NOT AUTHORIZED TO MAKE ANY REPRESENTATIONS, CONDITIONS OR WARRANTIES, STATUTORY OR
OTHERWISE, ON AWC'S BEHALF NOR TO VARY ANY OF THE TERMS OR CONDITIONS OF THIS AGREEMENT.

If You do not agree to the terms of this Agreement, do not download or install the Software and promptly return the entire Package to the place
You obtained it for a full refund. If you should have any difficulty in obtaining such refund, please contact AWC at 281-334-4341.

LIMITED LICENSE: You are entitled to download or install, and operate this Software solely for your own use, but may not sell or transfer
reproductions of the Software or Documentation to other parties in any way. You may download or install, and operate one copy of the Software
on a single terminal connected to a single computer. You may not network the Software or otherwise use it on more than one computer or
computer terminal at the same time.

OWNERSHIP; COPYRIGHT: Title to the Software and the Documentation, and patents, copyrights and all other property rights applicable
thereto, shall at all times remain solely and exclusively with AWC and its licensors, and You shall not take any action inconsistent with such title.
The Software and the Documentation are protected by United States, Canadian and other applicable laws and by international treaty provisions.
Any rights not expressly granted herein are reserved to AWC and its licensors.

OTHER RESTRICTIONS: You may not cause or permit the disclosure, copying, renting, licensing, sublicensing, leasing, dissemination or other
distribution of the Software or the Documentation by any means or in any form, without the prior written consent of AWC. You may not modify,
enhance, supplement, create derivative work from, adapt, translate, reverse engineer, decompile, disassemble or otherwise reduce the Software to
human readable form.

LIMITED WARRANTY: AWC warrants for a period of ninety (90) days following original retail purchase of this copy of the Software that the
Software is free from substantial errors or defects that will materially interfere with the operation of the Software as described in the
Documentation. This limited warranty: (i) applies to the initial purchaser only and may be acted upon only by the initial purchaser; and (ii) does
not apply to any patch, update, upgrade, modification, or other enhancement provided by AWC with respect to the Software or the Documentation
or to any bonus game provided by AWC at no extra charge as part of the Package, which are provided on an AS IS BASIS ONLY. EXCEPT AS
STATED ABOVE, AWC AND ITS LICENSORS MAKE NO OTHER WARRANTY OR CONDITION, EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, REGARDING THIS SOFTWARE. THE IMPLIED WARRANTY THAT THE SOFTWARE IS FIT FOR A
PARTICULAR PURPOSE AND THE IMPLIED WARRANTY OF MERCHANTABILITY SHALL BOTH BE LIMITED TO THE NINETY
(90) DAY DURATION OF THIS LIMITED EXPRESS WARRANTY. THESE AND ANY OTHER IMPLIED WARRANTIES OR
CONDITIONS, STATUTORY OR OTHERWISE, ARE OTHERWISE EXPRESSLY AND SPECIFICALLY DISCLAIMED. Some jurisdictions
do not allow limitations on how long an implied warranty or condition lasts, so the above limitation may not apply to You. This limited warranty
gives You specific legal rights, and you may also have other rights which vary from jurisdiction to jurisdiction.

If you believe you have found any such error or defect in the Software during the warranty period, contact AWC as described in the
Documentation. If you have a problem resulting from a manufacturing defect in the Software, AWC's and its licensors' entire liability and Your
exclusive remedy for breach of this limited warranty shall be the replacement of the Software, within a reasonable period of time and without
charge, with a corrected version of the Software. Some jurisdictions do not allow the exclusion or limitation of relief, incidental or consequential
damages, so the above limitation or exclusion may not apply to You.

LIMITATION OF LIABILITY: AWC AND ITS LICENSORS SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL,
EXEMPLARY OR OTHER INDIRECT DAMAGES, EVEN IF AWC OR ITS LICENSORS ARE ADVISED OF OR ARE AWARE OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL AWC'S AND ITS LICENSORS' AGGREGATE LIABILITY EXCEED THE
PURCHASE PRICE OF THIS PACKAGE. Some jurisdictions do not allow the exclusion or limitation of special, incidental, consequential,
indirect or exemplary damages, or the limitation of liability to specified amounts, so the above limitation or exclusion may not apply to You.

GENERAL: This Agreement constitutes the entire understanding between AWC and You with respect to subject matter hereof. Any change to
this Agreement must be in writing, signed by AWC and You. Terms and conditions as set forth in any purchase order which differ from, conflict
with, or are not included in this Agreement, shall not become part of this Agreement unless specifically accepted by AWC in writing. You shall
be responsible for and shall pay, and shall reimburse AWC on request if AWC is required to pay, any sales, use, value added (VAT), consumption
or other tax (excluding any tax that is based on AWC's net income), assessment, duty, tariff, or other fee or charge of any kind or nature that is
levied or imposed by any governmental authority on the Package.

EXPORT AND IMPORT COMPLIANCE: In the event You export the Software or the Documentation from the country in which You first
received it, You assume the responsibility for compliance with all applicable export and re-export regulations, as the case may be.

GOVERNING LAW: This Agreement shall be governed by, and any arbitration hereunder shall apply, the laws of the Texas, U.S.A.
All rights reserved. SeaBass is Copyright © 2004 by AWC. All rights reserved.

	Title Page
	Table of Contents
	Overview – What is SeaBass?
	If You Need Help
	What Else You'll Need
	Features
	Differences from Basic
	Controlling the Build Process
	Command Line Options
	Keyword Reference
	Operator Reference
	APP-II Specifics
	APP-IV Specifics
	Example
	Installing a C Compiler
	SeaBass Keywords
	Notes
	Notes
	Notes
	License

